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The Restoration of Constraints 

in Nonholonomic Problems 1 

bY 
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- Abstract. This paper considers a system described by n differential equations of the 

first order involving n state variables and m control variables. It is assumed that a 

nominal state and a nominal control, not satisfying all the equations , but consistent with 

the boundary conditions, are given. An iterative procedure is developed leading to a 

varied state and a varied control consistent with all the equations and the boundary con- 

ditions. The procedure involves quasilinearization with an added optimality condition, 

namely, the requirement of least-square change of the control. Several numerical 

examples are supplied. 

-- - - 
This research was supported by the NASA-Manned Spacecraft Center, Grant No. 
NGR-44-006-089. 

Professor of Astronautics and Director of the Aero- Astronautics Group, Department 
of Mechanical and Aerospace Engineering and Materials Science, Rice University, 
Houston, Texas. 

Graduate Student in Aero- Astronautics , Department of Mechanical and Aerospace 
Engineering and Materials Science, Rice University, Houston, Texas . 

1 

3 



2 AAR-40 

1. Introduction 

4 In problems described by nonholonomic equations , a nominal state and a nominal 

control approximating a solution (but not satisfying all the equations exactly) may be 

available. Starting from this nominal state and control, one may wish to  determine a 

varied state and a varied control, close to the nominal and satisfying all the equations 

exactly. This situation arises in some of the iterative algorithms for minimizing 

functionals of variables subject to nonholonomic constraints, namely, first variation methods 

and second variation methods. In this paper, which is a continuation of the research on 

holonomic problems presented in Ref. 1, a systematic procedure is developed to change 

the state and the control in an optimal way: this is the requirement that the constraints 

be restored with the least-square change of the control. 

The adjective nonholonomic is employed in this paper in the sense of nonentire, that is , 
difterential . 
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2 .  Preliminary Considerations 

Consider a system described by the nonholonomic equation 

where CP is a scalar function of the scalar arguments x (state variable), u (control variable), 

and t (independent variable, time); the dot denotes the derivative with respect to the time 

t . Assume that the state x is subject to the boundary conditions 

x(0) = a ,  x(7) = 6 

where a, B, 7 are  prescribed scalar quantities. 

Suppose that - nominal functions x(t), u(t) satisfying the boundary conditions (2), but 

not consistent with the differential constraint (l), are available. Let x"(t), G( t )  denote 

-- varied functions related to the nominal functions as follows: 

Z(t) = x(t) + 6x(t) 9 G(t) = u(t) + 6u(t) (3 ) 

where 6x(t), 6u(t) denote the perturbations of x, u about the nominal functions. If quasi- 

linearization is employed, Eq. (1) is approximated by 

(4) €& = 6cp - (i - cp) 

where 

&$ = c p  6x+cp 6u 
X U (5) 
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denotes the first-order change of CP. From (4) and (5), one obtains the relation 

si = cp 6x + qY 6u - (2 - rp) 
X U 

which is subject to the boundary conditions 

(7) 6X(O) = 0 , k(I-1 = 0 

In Eq. (6) ,  the time-dependent coefficients cp , cp , and (i - cp) are computed for the nominal x u  

functions x(t), u(t). Equation (6) is the relation to  be satisfied by the corrections 6x(t), 

h ( t )  in order to restore the constraint (1) to first order. Since we have one equation and 

two unknown functions, the solution of the restoration problem is nonunique . However, a 

unique solution can be obtained if we impose an additional condition on the system of 

variations. 

If the functions x(t), u(t) are an approximation to an interesting solution, one may 

wish to restore the constraint (1) while causing the least-square change of the control . 5 

Therefore, we minimize the functional 

I- 
2 

(6u) dt 

subject to the linearized constraint (6) and the boundary 

(8 ) 

conditions (7). Standard methods 

of the calculus of variations (see, for instance, Chapter 2 of Ref. 2) show that the 

fundamental function of this problem is given by 

For example, the nominal functions x(t), u(t) could be those obtained at the end of any 
gradient phase of a minimization algorithm. In this case, one may wish to restore the 
constraint (1) before starting the next gradient phase. 

5 
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where x( t ) denotes an undetermined, variable Lagrange multiplier. The Euler 

equations of this problem are 

and are to be solved in combination with Eq. (6) and the boundary conditions (7). Upon 

eliminating 6u from (6) and (10-2), we obtain the differential system 

(11) 
2 6 2 = c p 6 x + c p A - ( i - c p ) ,  X = - c p A  

X U X 

which must be integrated subject to the boundary conditions (7). Once the functions 6x(t) 

and A(t) a r e  known, the function h ( t )  can be computed from (10-2). 

Since Eqs. (11) are linear in 6x and A, any of the methods for solving linear equations 

with variable coefficients can be employed. For example, let the method of particular 

solutions be used (Ref. 3). Denote by 
6 

6x, = 6x1(t) , A 1 1  = x (t) 

the particular solution of the system (11) subject to the initial conditions 

6X1(O) = o  , A1(0) = 1 

6 
Next, denote by 

= 6x2(t) , 6x2 2 2  
A = h (t) 

-- 
The subscripts 1 and 2 denote the first  and second integration, respectively. 6 
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the particular solution of the system (11) subject to the initial conditions 

6X2(0) = 0 , X2(0) = 0 

Then, the linear combinations 

6x(t) = k16xl(t) + k26x2(t) , W) = klXl(t) + k2X2(t) (16) 

satisfy the differential equations (11) and the boundary conditions (7) providing the constants 

k and k are chosen as follows: 1 2 

kl + k = 1 , 2 k16x1(7) + k26x2(7) = 0 

This means that 

The previous algorithm can be summarized as follows: (a) assume nominal functions 

x(t), u(t); (b) compute the variable coefficients cp ,CR , and (2 - cp); (e) determine the 

particular solution 6x (t), X (t) by forward integration of Eqs, (11) subject to the initial 

x u  

1 1 

conditions (13); also, determine the particular solution 6x (t), 1 (t) by forward integration 2 2 

of Eqs. (11) subject to the initial conditions (15); (d) compute the constants k and k from 

Eqs. (18); (e) determine the correction 6x(t) with Eq. (16-1), the function X(t) with Eq. 

(16-2), and the correction 6u(t) with Eq. (10-2); and (f) compute the varied functions %(t), 

G(t) with Eqs . (3). In this way, the first iteration is completed. Next, the functions x"(t), 

G(t) given by Eqs . (3) are employed as the nominal functions x(t), u(t) for the second 

1 2 
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iteration, and the procedure is repeated until a desired degree of accuracy is obtained, 

that is, until the inequality 
7 

2 7 
P = s  (2-cp) d t s s  

0 

is satisfied, where 6 is a small number. 

Remark 2 1. If the nominal functions x(t), u(t) satisfy the constraint (l), the forcing 

term (2 - cp) is missing in  Eq. (11-1). Therefore, Eqs. (11) become homogeneous and, 

for the boundary conditions (7), admit the solutions 

with the implication that 

6u(t) = 0 

everywhere. 

Remark 2 .2 .  An interesting modification of the previous problem arises if the 

boundary conditions (2) are replaced by 

x(0) = a , X(T) = free (22) 

., 
Therefore, the restoration problem consists of minimizing the integral (8) subject to the 

linearized constraint (6) and the boundary conditions 

6~(0 )  = 0 , 6x(~)  = free 

- 
The symbol P denotes the performance index. 7 
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As in the fixed-endpoint problem, the optimum functions 6x(t), 6u(t), x(t) are described 

by the differential equations (6) and (10). However, the boundary conditions are difTerent, 

in  the sense that Eqs. (7) must be replaced by 

(24) 6X(O) = o  , X(7)  = o  

with condition (24-2) resulting from the transversality condition of the calculus of variations 

(see, for instance, Chapter 2 of Ref. 2). In the light of (24-2), Eq. (10-1) is solved by 

X(t) = 0 

and Eq. (10-2) by 

6u(t) = 0 

with the implication that 

G(t) = u(t) 

and that J = 0. Under these conditions, Eq. (6) reduces to . 

and, in combination with the bitial condition (24- l ) ,  supplies the correction &(t) to first- 

order terms. Once 6x(t) is known, the varied function x"(t) can be computed with Eq. (3-1). 

In theory, this procedure must be employed iteratively until the converged solution is 

obtained. In practice, one can bypass the linearized equation (28) and restore the constraint 

(1) directly: the function Z(t) is obtained by forward integration of Eq. (1) subject to the 

initial condition (22- 1) and the control law (27). 
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3. General Theory 

Consider a system described by the nonholonomic equations 

.1 1 1  2 n 1 2  m x = c p  (x ,x ,..., x , u  , u  ,..., u , t)  

.2 2 1  2 n 1 2  m x = c p  (x ,x ,..., X , u  , u  ,..., u , t )  

. . . . . . . e . . . . . . . . . . . . .  

.n n 1 2  n 1 2  m x = c p  (x ,x ,..., x , u  , u  ,..., u , t )  

1 2  n 1 2  n where cp , cp , . . . , cp denote scalar functions of the scalar arguments x , x  , . . ,x  (state 

variables), u , u , . . . , u (control variables), and t (independent variable, time). In 

vector-matrix notation, Eqs . (29) can be rewritten in the form 

1 2  m 

where x denotes an n-vector, u an m-vector, and ep an n-vector, respectively defined 

as follows: 

x =  

- I  

1 

2 

X 

X 

n 
X - 

, cp(x,u,t) = 

Assume that the state variables are subject to the end conditions 
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1 1 1 1 

2 2 2 2 

x (0) = a  , x (7) = B 

x (0) =a, 7 x (7) = B 

. . . . . . . . . . . . . . .  
n n x (0) = a  , Xn(7) = Bn 

1 2  n 1 2  n 
where a , a , . . . ,a and 6 , P , . . . ,8 denote prescribed scalar quantities. In vector- 

matrix notation, Eqs . (32) can be rewritten in the form 

x(0) = a  , x(7) = 6 (33) 

where a and 8 denote n-vectors, respectively defined as follows: 

a= Y B =  (34) 

Next, suppose that nominal functions x(t), u(t) satisfying the boundary conditions (33), 

but not consistent with the differential constraint (30), are available. Let 2(t), G(t) denote 

varied functions related to  the nominal functions as follows: 

2(t) = x(t) + k( t )  , G(t) = u(t) + 6u(t) (35) 

8 If quasilinearization is employed, Eq . (30) is approximated by 

T T 6 i = A  6 x + B  6u - (5 - icp) 

The superscript T denotes the transpose of a matrix. 8 
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. . . . . . . . . . . . . . . . . . . .  I I A(x, u, t)  = 

and B denotes the m x n m a t r k  

B(x,u,t) = 

1 1  1 1 

1 2  2 2 

acp /au aq?/au . . . . . .  arpn/au 

acp /au a$/au . . . . . .  aepn/au 

. . . . . . . . . . . . . . . . . . . . .  
l m 2  acp /au aep /sum . . . . . .  

(37) 

Note that the jth - column of the matrix (37) is the gradient of the function c$ with respect 

to the vector x; analogously, the jth column of the matrix (38) is the gradient of the 

function 4 with respect to the vector u. The boundary conditions (33) become 

- 

6x(O) = 0 , 6X(T) = 0 (3 9) 

I€ the functions x(t), u(t) are an approximation to an interesting solution, one may 

wish to restore the constraint (30), while causing the least-square change of the control. 

Therefore, we minimize the functional 

1 .7 

2 ' l o  
J = -  I bT6udt 

subject to the linearized constraint (36) and the boundary conditions (39). 
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Standard methods of the calculus of variations (see, for instance, Chapter 2 of Ref. 2) 

show that the fundamental function of this problem is given by 

where X(t), an n-vector, denotes the undetermined, variable Lagrange multiplier 

The Euler equations of this problem are 

and are to be solved in combination with Eq. (36) and the boundary conditions (39). Upon 

eliminating 6u from (36) and (43-2), we obtain the differential system 

which must be integrated subject to the boundary conditions (39). Oxe the functions 

6x(t) and X(t) a re  known, the function 6u(t) can be computed from (43-2). 

Since Eqs. (44) are linear in 6x and X, any of the methods for solving linear equations 

with variable coefficients can be employed. For example, let the method of particular 

solutions be used (Ref. 3). To this effect, we integrate Eqs . (44) forward n + 1 times 
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from t = 0 to t = T using n + 1 different sets of initial conditions and the stopping condition 

t = T . From these integrations, we obtain the pairs of functions 9 

6x. 1 = 6x.(t) 1 y xi = Xi(t) , i = 1,2, .  . .,n+l (45) 

each of which is a particular solution of (44). In each integration, the prescribed initial 

condition (39- 1) is employed. That is, 6xi(0) is such that 

6xi(0) = 0 , i = 1,2, . . . , n+l (46) 

We note that, for each i, Eq. (46) is equivalent to n scalar conditions. Since 2n initial 

conditions are needed for each integration, Eq. (46) must be completed by the relation 

hi(0) = y i  , i = 1,2 ,  ...,n+l 

where, for each i, Yi denotes the n-vector 

Yi = Y 

The elements of (48) are Kronecker deltas, such that 

6.. = 1 7 

11 

6.. = o  Y 

11 

i = 1,2,  ..., n+l 

i f j  

(47) 

- 
Y- 

The suhc r ip t  i denotes the generic integration. 
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In the light of (48)-(49), the explicit form of (47) is the following: 

- "  
1 
0 
0 

0 
0 - -  

. I  

0 
1 
0 

0 
0 

, . . . . ,x ( O ) =  n 

. I  

0 
0 
0 

0 
1 -. 

- -  
0 
0 
0 

0 
0 - -  

Next, we introduce the n + 1 undetermined, scalar constants k. and form the linear 
1 

combinations 
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Then, we inquire whether, by an appropriate choice of the constants, these linear combinations 

can satisfy the differential equations (44) and the end conditions (39). As shown in Ref. 3, 

this i s  precisely the case if the constants k. are determined as follows: 
1 

n+l n+l 
i T- 

i=l i=l 
k . = 1 ,  k.6x.(7) = O 
1 1 1  

Equations (52) are equivalent to the n + 1 scalar equations 

=1 
+ 'n+l 

+ k n + ~  n+l 

+ . . . . . .  
1 1 

kl +k2 

6x (7) = o  1 
k 6x ( ~ ) + k  6x (T)+ . . . . . . 
1 1  2 2  

2 6x (7) = 0 2 2 k 6x ( ~ ) + k  6x (T)+ . . . . . . 
1 1  2 2  +kn+l n+l 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  
k16x:(7) + k26x;(7) + . . . . . . + k 6xn (7) = 0 n+l n+l 

(53) 

which are linear and supply the constants k k . . . , k 1, 2, n+l. 
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The previous algorithm can be summarized as follows: (a) assume nominal functions 

x(t), u(t); (b) compute the variable matrices A, By (2 - cp) ; (c) determine the n + 1 particular 

solutions 6x.(t), X.(t) by integrating 

(d) compute the n + 1 constants k. from Eqs. (53); (e) determine the correction &(t) 

with Eq. (51- I), the function X(t) with Eq. (51-2), and the correction 6u(t) with Eqs. (43-2); 

Eqs. (44) subject to the initial conditions (46)-(47); 
1 1 

1 

and (f) compute the varied functions x"(t), G(t) with Eqs. (35). In this way, the first iteration 

is completed. Next, the functions %t), G(t) given by Eqs. (35) are employed as the nominal 

functions x(t), u(t) for the second iteration, and the procedure is repeated until a desired 

degree of accuracy is obtained, that is, until the inequality 

T P = l  (?- cp) (2 - cp)dtsE: 
I- 

0 
(54) 

is satisfied, where E is a small number. 

Remark 3.1 .  - If the nominal functions x(t), u(t) satisfy the constraints (30) exactly, 

the forcing term (2 - cp) is missing in Eq. (44- 1). Therefore, Eqs . (44) become homo- 

geneous and,for the boundary conditions (39 ,  admit the solutions 

6x(t) = 0 , q t )  = 0 (55) 

with the implication that 

6u(t) = 0 

everywhere. 
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Remark 3.2 .  An interesting modification of the previous problem arises if the 

boundary conditions (33) are replaced by 

x(0)  = a , x@) =free (57) 

Therefore, the restoration problem consists of minimizing the integral (40) subject to the 

linearized constraint (3 6) and the boundary conditions 

h ( 0 )  = 0 , ~x(T)  = free 

As in the fixed-endpoint problem, the optimum functions 6x(t), 6u(t), X(t) a r e  described 

by the differential equations (36) and (43). However, the boundary conditions are different 

in the sense that Eqs . (39) must be replaced by 

(59) 6X(O) = o  , h(r) = o  

with condition (59-2) resulting from the transversality condition of the calculus of variations 

(see, for instance, Chapter 2 of Ref. 2). In the light of (59-2), Eq. (43-1) is solved by 

and Eq. (43-2) by 

with the implication that 

X(t) = 0 

6u(t) = 0 

G(t) = u(t) 
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and that J = 0 .  Under these conditions, Eq. (36) reduces to  

and, in combination with the initial condition (59- l), supplies the correction 6x(t) to 

first-order terms. Once 6x(t) is known, the varied function Z(t) can be computed with 

Eq. (35- 1). In theory, this procedure must be employed iteratively until the converged 

solution is obtained. In practice, one can bypass the linearized equation (63) and restore 

the constraint (30) directly: the function Z(t) is obtained by forward iteration of Eq. (30) 

subject to the initial condition (57- 1) and the control law (62). 

Remark 3 . 3 .  In the previous sections, we considered two limiting cases: (a) the 

case where the n state variables are all given at the final point and (b) the case where the 

n state variables are all free at the final point. For case (a), the optimum control change 

is 6u(t) # 0. For case (b), the optimum control change is 6u(t) = 0; this corresponds 

to the customary way in which the constraints are restored in the gradient method. 

Between the previous limiting cases a great variety of intermediate situations can 

be imagined. For example, p state variables may be given and q may be free at the 

final point, with p + q = n. Only q Lagrange multipliers vanish at the final point, and the 

remaining p Lagrange multipliers must be determined by solving the two-point boundary 

value problem. Since the n Lagrange multipliers do not vanish simultaneously at the 

final point, the optimum control change is 6u(t) # 0. 
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4 .  - Numerical Examples 

In order to illustrate the theory, several numerical examples are now supplied. For 

simplicity, the symbols employed in this section denote scalar quantities. 

Example 4.1. Consider the differential constraint 

2 2 = x  + u  

subject to the boundary conditions 

x(0) = 1 , x(1) = 1 

Assume the following nominal functions: 

x(t) = 1 , u(t) = 0 

Clearly, these functions satisfy the boundary conditions (65) but not the differential 

constraint (64). To restore the constraint, the algorithm of Section 3 is employed and is 

repeated until Ineq. (54) is satisfied for c: = 10 

Burroughs B-5500 computer in double-precision arithmetic are summarized in Tables 1 and 

2, where N denotes the iteration number. 

- 10 . Computations performed with a 

Example 4 . 2 .  Consider the differential constraint 

4 k = x  + u  

subject to the boundary conditions 

x(0) = 0 , x(1) = 1 
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Assume the following nominal functions: 
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x(t) = t , u(t) = 0.5 (69) 

Clearly, these functions satisfy the boundary conditions (68) but not the differential con- 

straint (67). To restore the constraint, 

repeated until Ineq. (54) is satisfied for 

the algorithm of Section 3 is employed and is 

E = 10-l'. Computations performed with a 

Burroughs B- 5500 computer in double-precision arithmetic are summarized in Tables 3 

and 4, where N denotes the iteration number. 

Example 4 . 3 .  Consider the differential constraints 

k = y ,  I j = Z s i n u -  1 

subject to the boundary conditions 

x ( O ) = O  , y(O)=O , x ( l ) = 0 . 3  , y( l )=O 

Assume the following nominal functions: 

x(t) = 0.3t , y(t) = 0 , u(t) = 0 (72) 

Clearly, these functions satisfy the boundary conditions (71) but not the differential con- 

straints (70)- To restore the constraints , the algorithm of Section 3 is employed and is 

repeated until Ineq. (54) is satisfied for E = lom1'. Computations performed with a 

Burroughs B- 5500 computer in double-precision arithmetic are summarized in Tables 5 

and 6 ,  where N denotes the iteration number. 
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Table 1. Converged values of the functions x(t), u(t) 

0 .o 1.0000 -3.5233 

0.1 0.7774 -2.5263 

0.2 0.6147 - 1.7152 

0.3 0.5085 -1.0536 

0.4 0.4539 -0.5128 

0.5 0.4454 -0.0698 

0.6 0.4782 0.2939 

0.7 0.5492 0.5937 

0.8 0.6574 0.8415 

0.9 0.8054 I. 0472 

1 .o 1 .oooo 1.2185 
-- 

Table 2. The function P(N), J(N) 

N P J 
- -~ 

1 
0 0.9ox 10 

1 0.32 x 10-I 0.34 x 10 

2 0.79 x 0.97 x 

0.21 x 3 0.98 x 10 

1 

- 16 

P ---- 
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Table 3 .  Converged values of the functions x(t), u(t) 

0 .o 0 .oooo 0.9008 

0.1 0.0900 0.9007 

0.2 0.1801 0.9001 

0.3  0.2703 0.8975 

0.4 0.3608 0.8906 

0.5 0.4520 0.8764 

0.6 0.5448 0.8519 

0.7 0.6408 0.8150 

0.8 0.7430 0.7658 

0.9 0.8579 0.7076 

1 .o 1 .oooo 0.6472 

Table 4. The functions P(N), J(N) 

0 0 0.16 x 10 

1 o .32 0.61 x 10-1 

2 0.79 x 0.61 
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Table 5. Converged values of the functions x(t), y(t), u(t) 
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0 .o 0 .oooo 0.0000 1.5602 

0.1 0.0049 0.0999 1.5193 

0.2 0.0199 0.1990 1.4384 

0.3 0.0447 0.2952 1.3087 

0.4 0.0787 0.3828 1.1232 

0.5 0.1206 0.4513 0.8788 

0.6 0.1678 0.4847 0.5795 

0.7 0.2158 0.4643 0.2387 

0.8 0 -2584 0.3761 -0.1207 

0.9 0.2886 0.2178 -0.4711 

1 .o 0.3000 0.0000 -0.7871 

Table 6.  The functions P(N), J(N) 

N P J 

1 0 0. lOx 10 

0 
1 0.79 x 10-I 0 . 2 6 ~  10 

2 0.32 x 0.29 x lo-' 

3 0.31 0.28 x 

4 0.17 x 0.21 

5 0.38 0. 97 

--_I_ 
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